A technology for forming submicron particle layers on substrates by aerosol flow systems.エアロゾル流システムで基板上にサブミクロン粒子層を形成する技術


「高橋幹二賞」学会誌「エアロゾル研究」の32巻2号から35巻1号までに発表された英文の研究論文・技術論文において特に優れ、学会のグローバル化への貢献が期待される論文の著者に授与される。”Kanji Takahashi Award” is awarded to the author of an outstanding paper in English published in the journal “Aerosol Research” between Vol. 32, No. 2 and Vol. 35, No. 1, which is expected to contribute to the globalization of the society.

閉ループ式エアロゾル流によるサブミクロン蛍光粒子の集積 Deposition of Submicron Fluorescent Particles by a Closed-Loop Aerosol Flow

This study considered the deposition of submicron particles on living-cell or “human-body”-modelled surface.本研究では,「細胞」システム・モデル表面上へのサブミクロン粒子の堆積を背景とした。

Why a fluorescence microscope? Because other analytical tools such as SEM, need low pressure or vacuum condition, which is not “good” for living-system. なぜ蛍光顕微鏡? SEMのような他の分析ツールは低圧または真空条件を必要とするが,これは生体系に対して「良い」ではない。

空気・液体界面への粒子の輸送を模倣するために、エアロゾル・フロー・システムが構築された。An aerosol flow system has been constructed to mimic the delivery of particles to the air-liquid interface.

OTHER PAPERS FROM US: https://empatlab.net/tag/paper/

A colloidal suspension of submicron fluorescent core-shell silica-based particles was sprayed by an ultrasonic nebulizer. The dynamics of the aerosol settling was investigated by numerical simulation to determine the carrier gas flow rate, which was further verified through experimentation.

Fluorescent microscopy was used to observe the particles deposited on the substrate. It was found that the apparent (fluorescent) size distribution was shifted from 2.9 ± 6.0 μm to 1.7 ± 2.2 μm, which is correlated to the changes of aggregate size from 0.70 μm to 0.24 μm due to the changes in the colloidal suspension concentration. In addition, the uniformity of the particles dispersed on the substrate was not significantly affected by the suspension’s concentration, as confirmed by the inter-particle distance analysis.

It is therefore suggested that the method presented here may potentially be applied for the deposition and analysis of submicron particles on various types of substrate (i.e. air-liquid interface) without the need for vacuum imaging analysis (e.g. electron microscopy).





Open/Free Accessdoi.org/10.11203/jar.33.102

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s