Patent) How to form uniform nanoparticle layers on metal wire. 金属ワイヤー上に均一な粒子層を形成する方法

on

https://patents.google.com/patent/JP2009256790A/ja

A film containing titanium oxide having an activity as a photocatalyst and having a sufficient film quality is adhered to the surface of a conductive substrate with good adhesion.
A method of manufacturing a titanium oxide film by electrophoretic electrodeposition using a fluctuating voltage (or pulse voltage) for a dispersion medium containing titanium oxide particles dispersed therein, and the method A titanium oxide film is provided. As the dispersion medium, either an aqueous electrolyte or an organic electrolyte can be used. In an aqueous electrolyte, a polymer dispersant may be added. In an organic electrolyte (dispersion medium), isopropyl alcohol may be used.

2008-03-19 Priority to JP2008072596

2009-03-19 Application filed by Tam Network Kk, タムネットワーク株式会社

2009-03-19Priority to JP2009069155A

2009-11-05Publication of JP2009256790A

Abstract

【課題】光触媒としての活性を有する酸化チタンを含む被膜であって、十分な膜質を有するものを密着性よく、導電性の基材表面に付着させる。
【解決手段】酸化チタン粒子を分散させて含む分散媒に対して、変動する電圧(若しくはパルス状電圧)を用いて行う泳動電着により酸化チタン膜を製造する方法、及び、その方法で製造された酸化チタン膜を提供する。分散媒としては、水系の電解質若しくは有機系の電解質の何れをも使用可能である。水系の電解質では、高分子分散剤を添加してもよい。有機系の電解質(分散媒)では、イソプロピルアルコールを用いてもよい。

Related papers from our group:

パルス直流電気泳動法で微細な水系コロイダルTiO2ナノ粒子層を金属線に均一に付着 Electrophoretic packing structure from aqueous nanoparticle suspension in pulse DC charging (2010)

水系コロイダルナノ粒子の高密度付着と微細化を実現するパルス電気泳動法。Deposition of TiO2 nanoparticles in surfactant-containing aqueous suspension by a pulsed DC charging-mode electrophoresis (2009) Full Access: https://doi.org/10.2109/jcersj2.117.127

(a) Illustration of particles deposition by pulse DC charging and penetration of single particles through the packed transient cloud of particles near the substrate. (b) Illustration of particles deposition by DC charging. Continuous attraction force caused single and agglomerated particles to deposit together.(a)パルスDC帯電による粒子堆積と、基板近傍の充填された過渡的な粒子雲を通過する単一粒子の浸透を示す図である。(b) 直流帯電による粒子堆積の説明。連続的な吸引力により、単一粒子と凝集した粒子が一緒に堆積している。
(a) Illustration of cleaved deposit layer by heat treatment. The change in the deposited layer from d to d + δ is due to the expansion of metal substrate by a heater coil at 100 °C, 5 min. (b) Statistical analysis by software before and after the measurement. The masked areas with numbers show the counts of particles measured by the software. (a) 熱処理により劈開した堆積層の説明図。堆積層のdからd+δへの変化は、100℃、5分間のヒーターコイルによる金属基板の膨張によるものである。 (b) 測定前後のソフトウェアによる統計解析。数字でマスクされた部分は、ソフトウェアで測定された粒子のカウント数を示す。
Morphology of 7.5 wt% samples prepared at 1.3 V/cm by pulse DC charging (a and b) and DC charging (c and d) in cross-section (point A) and outer layer (point B). Small picture on the top right side show low resolution of deposited layer. Circles in (d) denote agglomerated particles パルスDC充電(a、b)およびDC充電(c、d)により1.3V/cmで作製した7.5wt%サンプルの断面(A点)と外層(B点)の形態。右上の小さな画像は、堆積した層の解像度が低いことを示す。(d)の丸印は凝集した粒子を示す。

https://www.jstage.jst.go.jp/article/jcersj2/117/1361/117_1361_127/_pdf