Consistent particle deposition & localization in leaf structures. 様々な葉の構造で一貫した粒子の沈着と局在


Journal: Forests (Dec. 2019).

電界放出走査型電子顕微鏡(FE-SEM)とエネルギー分散X線分光法(EDX)との組み合わせを適用して, ブミクロンの硫酸アンモニウム(AS)粒子の局在を可視化した。実験室の微粒子(エアロゾル)発生器から放出されたAS粒子を植物の葉表面に堆積させた。カラマツとスギの針葉およびブナとスダジイの葉表面上の粒子を計測した。粒子は葉の表側または背側のいずれかに堆積した。堆積したAS粒子は凝集せず、葉の構造に依存性がないことを確認した。この方法を用いて、森林樹木の葉および針葉の表面上への(大気汚染等の由来)サブミクロン粒子の沈着および局在化の初期段階の状態を明らかにできる可能性が示唆される。We applied a method combining field-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometry (EDX) to visualize the deposition and localization of the submicron-sized ammonium sulfate (AS) particles. The AS particles deposited on the surfaces of the leaves and needles did not aggregate, and they were deposited on the surfaces of the leaves and needles in the same manner, regardless of leaf structure.

1) Faculty/Institute of Agriculture, Tokyo University of Agriculture and Technology, 2) Forestry and Forest Products Research Institute, 3) Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 4) Research Faculty of Agriculture, Hokkaido University, 5) Institute of Engineering, Tokyo University of Agriculture and Technology. 東京農工大学、森林総合研究所、長崎大学、北海道大学

The secondary electron images of the leaves and needles after exposure to AS particles. AS粒子への曝露後の葉と針葉の二次電子画像:: Cryptomeria japonica スギ (a,b), Japanese larch (Larix kaempferi)カラマツ (c,d), Fagus crenataブナ (e), and Japanese chinquapin (Castanopsis sieboldii)スダジイ (f). The surfaces of the leaves were either covered with tubules (a,c), smooth layers (e), and plates (f) of waxy structures, or rarely covered with these structures (b,d). AS particles were deposited on both dense (a,c) and sparse (b,d) areas of the waxy tubule structures. Black arrows indicate AS particles.

SPECIAL ISSUE (Data: July 2021)

“Responses of Trees to Pollutants”
Guest Editor(s): Claudia Cocozza.

Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface
Micromorphology of Different Trees Impact Their Ability to Capture
Particulate Matter? Forests 2018, 9(11), 681;
Views: 1362, Downloads: 1970, Citations: 12, Altmetrics: 0

Su, K.; Yu, Q.; Hu, Y.; Liu, Z.; Wang, P.; Zhang, Q.; Zhu, J.; Niu, T.; Yue,
D. Inversion and Effect Research on Dust Distribution of Urban Forests in
Beijing. Forests 2019, 10(5), 418;
Views: 842, Downloads: 742, Citations: 0, Altmetrics: 1

Raddi, S.; Mariotti, B.; Martini, S.; Pierguidi, A. Salinity Tolerance in
<i>Fraxinus angustifolia</i> Vahl.: Seed Emergence in Field and Germination
Trials. Forests 2019, 10(11), 940;
Views: 890, Downloads: 1054, Citations: 0, Altmetrics: 0

Kwak, M.J.; Lee, J.; Kim, H.; Park, S.; Lim, Y.; Kim, J.E.; Baek, S.G.; Seo,
S.M.; Kim, K.N.; Woo, S.Y. The Removal Efficiencies of Several Temperate Tree
Species at Adsorbing Airborne Particulate Matter in Urban Forests and
Roadsides. Forests 2019, 10(11), 960;
Views: 1015, Downloads: 1498, Citations: 4, Altmetrics: 1

Yamane, K.; Nakaba, S.; Yamaguchi, M.; Kuroda, K.; Sano, Y.; Lenggoro, I.W.;
Izuta, T.; Funada, R. Visualization and Localization of Submicron-Sized
Ammonium Sulfate Particles on Needles of Japanese Larch (<i>Larix
kaempferi</i>) and Japanese Cedar (<i>Cryptomeria japonica</i>) and Leaves of
Japanese Beech (<i>Fagus crenata</i>) and Japanese Chinquapin (<i>Castanopsis
sieboldii</i>) after Artificial Exposure. Forests 2019, 10(12), 1151;
Views: 788, Downloads: 822, Citations: 0, Altmetrics: 0

Our journal articles