ElectroStatic Aerosol Pore Infiltration (ESPI)
Japanese: 静電エアロゾル細孔浸透技術
2015 June:
Best Poster Award at 9th Asian Aerosol Conference
Insertion of colloidal particles in the pores of a honeycomb structure via an aerosol route (気中に分散した液中微粒子のハニカム型多孔質体細孔内への沈着)
K. Kusdianto, M. Gen, M. Tsukada, W. Lenggoro* (*Corresponding author)
Related journal paper: https://doi.org/10.4164/sptj.51.759 エアロゾル法によるハニカム型多孔質体細孔内への粒子沈着

この研究のきっかけは、大気中に浮遊した微粒子が植物の葉の気孔に「詰まる」現象に着目した時。粒子径との気孔のサイズとの関係やその輸送の推進力について仮説が必要でした。大気中の微粒子の輸送において、私たちは「静電気力」も大事な推進力であることを提案しています。
A spray-based gas-phase method was proposed to insert presynthesized particles into a honeycomb structure. The fabricated structure, based on anodic aluminum oxide (AAO), had pores with an average diameter of 5.5 μm. When the structure was conductively coated and connected with a negative voltage, the positively charged (~1 μm) particles were located deep inside the pore canal (with a depth up to 130 μm) of the structure. Numerical simulations also showed that the electrostatic effect is the main driving force for inserting the particles. 帯電エアロゾルを噴霧する気相法が提案され、ハニカム構造内に合成前の粒子を挿入した。陽極酸化アルミニウムをベースとして作製した構造体は、平均直径5.5μmの細孔を有していた。作製した構造体を導電性コーティングし、負電圧で接続すると、正に帯電した(~1μm) 粒子は、構造体の細孔管(深さ130μmまで)の奥深くに位置していた。構造体の細孔管深部(深さ130μmまで)に存在した。これらの挿入は走査型電子顕微鏡で観察され、蛍光顕微鏡でも確認された。数値シミュレーションでも、静電効果が粒子挿入の主な駆動力であることが示された。
植物環境における粒子状物質の輸送現象に関する研究 (東京農工大学(研究活動 研究要素集 研究要素集)

